Gas sensing effects on In_2O_3 -CNT nanocomposites based FETs

Wonjin Lee

11.16, 2018

Advisor: Prof. Sung Hun Jin
Department of Electronic Engineering,
Incheon National University, Incheon 406-772, Korea
Outline

I Introduction
- Gas sensing mechanism
- Why hetero-structure of In$_2$O$_3$ SWNT?

II Experimental Details
- Hydrothermal growth
- Fabrication and characterization

III Results

IV Summary
Why gas sensor and how it works

Need of gas sensor

- NO₂ is dangerous to human and creatures
- Need of accurate, highly selective NO₂ sensor arises

Gas sensing mechanism

① Output resistance of the device changes when a particular gas is adsorbed on the sensing element from the surroundings

$$\Delta R = \left(\frac{R_{\text{gas}} - R_{\text{air}}}{R_{\text{air}}}\right) \times 100$$

② Adsorbed gas molecules desorb from the sensor surface when the gas disappears and the sensor regains its original resistance

[Innovative NRG]

[Mittal2014]
Motivation

Good gas sensor properties:
- High sensitivity, selectivity, recovery behavior and fast response time

Gas sensing behavior on bare SWNT
- High sensitivity and selectivity
- Poor recovery behaviors after NO\textsubscript{x} exposure for SWCNT gas sensors

Hetero-structure of cubic phase of In\textsubscript{2}O\textsubscript{3} SWNT
- Hydrothermal growth for enhanced gas sensing properties
- Stable reversible behaviors after NO\textsubscript{x} exposure
- Improved recovery behaviors

According to high gas sensing property of In\textsubscript{2}O\textsubscript{3}-SWNT, gas sensor based on In\textsubscript{2}O\textsubscript{3}-SWNT will be better than bare SWNT.
Experimental Details

Synthesis of hetero-structure

- Prepared by one step hydrothermal synthesis method
- Heterojunction was observed by SEM analysis

Fabrication of gas sensor

- Sensors fabricated by drop-casting the solution containing the In$_2$O$_3$ SWNT on channel area

Elemental composition of Indium Oxide

(a) (b) (c) (d) (e) (f)
Physical mechanism in heterostructure In_2O_3 CNT

Heterojunction effect of In_2O_3

Heterojunction make larger band bending

It adsorb more electron gas and contribute improvement on recovery behavior
Result

Recovery behavior

Improved recovery behavior => *Same result with theory*
Results

Hole donation of NO₂ lead larger shift of threshold voltage

- Threshold voltage shifts increase with NO₂ concentration
- Gas sensor can respond in low concentration
Conclusion

• The extracted shift of threshold voltages were different with concentration of NO₂ gas (effect of hole donation)

• Hetero-junction on In₂O₃ -CNT improved recovery behavior

• Gas sensor even expected to response at small amount of NO₂ gas, because minimum shift of threshold voltage was enough high.