Alignment of Unpurified, Solution-Processed Single Walled Carbon Nanotubes via Dielectrophoresis Based on Removable Graphene Electrodes

Sung Jae Park
Department of Electronic Engineering, Incheon National University
November 16, 2018
(HMDL: Hybrid Multiscale Materials and Device Lab.)
http://hmdl.incheon.ac.kr

SWNT/microbe suspension loading

Electric field application
Outlines

I Background and Motivation

II Experimental details

III Results and discussion

IV Summary
Background and Motivation

- **CNT**(single-walled Carbon Nanotubes)
 - Excellent electrical properties
 - Wide range of applications

- **DEP**(Dielectrophoresis)
 - Electrophoresis is a phenomenon in which dielectric particles move with the formation of electrical dipoles within a non-uniform electric field.
 - Techniques to control carbon nanotubes aligned at desired locations
Background and Motivation

● **DEP(Dielectrophoreisis)**

\[F_{DEP} = \Gamma \varepsilon_m \text{Re}\{F_{CM}\} \nabla |E_{rms}|^2 \]

\(\Gamma = \) Carbon nanotube shape factor
\(\varepsilon_m = \) Permittivity
\(\text{Re}\{F_{CM}\} = \) The current value of the complex Clausius-mossotti factor
\(\nabla |E_{rms}|^2 = \) Square of change in slope of field rms value

● **Factors to Consider**

- Density
- Time
- Frequency
- Intensity of electric field
Experimental details

- **Material synthesis**
 - Graphene (KIST)

- **Transfer on wafer**
 - Wafer (150nm, high doped N-type)

- **Lithography process**
 - Metal deposition (Cr : Ni = 1 : 50 nm)
 - Isolation (etching)

- **DEP(Dielectrophoresis)**
 - 0.1wt% → 5000:1, 3000:1, 1000:1
 - 0.2wt% → 5000:1, 3000:1, 1000:1
 - Time
Result and Discussion

0.1 wt% 5000:1 _1min
On/off ratio = 1.69E+00
Mobility = 0.4 cm²/V·sec

0.1 wt% 5000:1 _2min
On/off ratio = 3.07E+01
Mobility = 19.4 cm²/V·sec

0.1 wt% 5000:1 _3min
On/off ratio = 8.82E+00
Mobility = 26.3 cm²/V·sec
Summary

● Motivation
 ▪ The channel length of the semiconductor device becomes short (10 nm or less)
 → Physical limits such as source/drain tunneling leakage
 ▪ Ideal properties of 1 nm diameter carbon nanotubes (electrical)
 → Increase research value as a next-generation device

● Advantages
 ▪ Using ultra-thin graphene electrodes
 → Universally flexible for the applications of circuits or versatile gas (or bio)-sensors
 → Minimum residues, Minimum dry etching time, Excellent Ohmic contact properties
 between CNT and graphene electrodes, 1 nm-thick-height of graphene
 → Electrodes can be removed by using graphene as an electrode.

● Future Plans
 ▪ Whole results fully substantiate that feasibility on CNT alignment and electrical properties of CNT FETs are fully accessible.