Study for RRAM based on C-PVA doped with RGO (fabrication and switching mechanism)

Yeong Eun Kim

Mentor: Jin Heon Jeong & Advisor: Prof. Sung Hun Jin
Department of Electronic Engineering, Incheon National University
November, 16th, 2018
Outlines

Introduction
 ▪ RRAM characterization

Experimental details
 ▪ Fabrication

Results and discussion
 ▪ Switching mechanism
Introduction—RRAM characterization

What is RRAM?

- Structure & operating mechanism

Two kinds of RRAM

- Bipolar RRAM & Unipolar RRAM

To be ideal RRAM

- Checking voltage and resistance

What is RRAM?

- Should have small power consumption and small physical size
- Should have good retention, endurance and program/erase speed

Checking voltage and resistance

Materials Today Volume 19, Number 5 June 2016
AIP ADVANCES 5, 065022 (2016)
Experimental details _ fabrication

1. BE layer
 ITO

2. Insulator layer (Spin coating)
 C-PVA(2[wt%]) + RGO(0.05mg/ml)

3. TE layer
 (Thermal evaporation via shadow mask)
 Al

Trying many volume ratio of C-PVA:RGO
>1:1, 1:3, 1:5, 1:10, 1:13, 1:15

RGO ratio of C-PVA+RGO

Density of C-PVA+RGO
Results and discussion

- 0~10 volt, compliance current 1mA
- 0~5 volt, compliance current -5mA

C-PVA:RGO=1:1

C-PVA:RGO=1:3

C-PVA:RGO=1:5

C-PVA:RGO=1:10

C-PVA:RGO=1:13

C-PVA:RGO=1:15

- 0~10 volt, compliance current 1mA
- 0~5 volt, compliance current -5mA

- C-PVA:RGO=1:1
- C-PVA:RGO=1:3
- C-PVA:RGO=1:5
- C-PVA:RGO=1:10
- C-PVA:RGO=1:13
- C-PVA:RGO=1:15
Results and discussion

Set/Reset voltage

- Insulator becomes thinner
- Set/rest voltage smaller
- HRS resistance smaller

HRS/LRS resistance

Event Factor of C-PVA + RGO

- Filament connection well
- Yields ideal
- Operating cycles down

Maximum number of yields

Maximum number of operating cycles

C-PVA : GO

C-PVA : RGO
Results and discussion_ switching mechanism

- In(I/V) ≈ 1
- The trapped charges follow Ohm’s law, as depicted by the slope (~1) of the initial part of curve

- In(I/V) ≈ 2
- At a higher voltage, the charge transport is restricted by SCLC (space charge limited conduction), governed by Child’s law

\[J = \frac{9}{8} \varepsilon \varepsilon_0 \mu \frac{V^2}{L^3} \]
Thank You