Bias stress instability of MoTe$_2$ FETs under DC and pulse mode stress

Young Jun Byeon
Department of Electronic Engineering, Incheon National University
(HMDL: Hybrid Multiscale Materials and Device Lab.)
http://hmdl.incheon.ac.kr
contents

I Why MoTe₂?

II Fabrication process

III Bias instability under DC and pulse

IV Summary
Graphene
- 2D material
 - Graphene is 2D material,
 - High mobility and unique characteristic but band-gapless

Transition Metal Dichalcogenides (e.g., MoS$_2$, MoSe$_2$, MoTe$_2$, WSe$_2$)

TMDC
- Structure
 - TMDC, MX$_2$ structure
 - (M is transition metal, X is chalcogen)
 - \sim1.2eV bandgap

MoTe$_2$
- Application
 - High on/off ratio, mobility and low consume power
 - Thin, flexible..
 - High performance FETs and memory

- Reliability issue important.
- MoTe$_2$ is less studied than MoS$_2$
Fabrication process

- Organic residue
- PDMS
- MoTe₂

20 nm SiO₂
n++ Si

Exfoliation & Transfer

H₂/ Ar mixture

Thermal annealing
200°C 30 minute
400/400 sccm(Ar/ H₂)

Photolithography (10 sec)

PR residue

Au evaporation

Lift-off

Cleaning

Hybrid Multiscale-materials and Device Lab. (HMDL) - 융합 다차원 소재 및 소자 연구실 - Sung Hun Jin
Bias instability by DC mode

NBTS
- V_{th} negative direction shift, bias stress increases, ΔV_{th} larger

PBTS
- V_{th} positive direction shift, bias stress increases, ΔV_{th} larger

Shallow trap
- Shallow trap E_i
- Deep trap E_v

Stretched exponential equation
- $\Delta V_{TH} = \Delta V_{th0} \left[1 - \exp\left\{-(t/\tau)^\beta\right\}\right]
- \Delta V_{th0} : \Delta V_{th}$ at infinite time
- τ : trapping time of carriers
- β : the stretched exponential exponent

- Under same bias stress, effective stress time increases, ΔV_{th} larger
- **PBTS tends to be the same as NBTS**, difference in the size of ΔV_{th}
Bias instability by pulse mode

Duty cycle

- Duty cycle increases, ΔV_{th} larger
- DC mode ΔV_{th} is larger than pulse mode

Reproducibility

- In two device, duty cycle decreases
 same ΔV_{th} smaller

NBTS

- Under pulse mode NBTS,
 duty cycle increases, ΔV_{th} larger

PBTS

- PBTS tends to be the same as NBTS,
 difference in the size of ΔV_{th}

DC vs Pulse

Shallow trap

Deep trap

Hybrid Multiscale-materials and Device Lab. (HMDL) – 응용 다차원 소재 및 소자 연구실 – Sung Hun Jin
In order to study the reliability of MoTe$_2$, I studied the reliability of bias.

Result, V_{th} changes depending on bias polarity in DC mode stress. In pulse mode stress, V_{th} changes regardless of the bias polarity.

That is, the MoTe$_2$ device has a reliability issue.

In the future, I plan to study reliability based on temperature.
Thank you