유전영동을 이용한 액상 탄소나노튜브 정렬기술

(Solution type SWCNTs alignment via dielectrophoresis)

인천대학교 공과대학
전자공학과
곽상○ (2011011**)
최성○ (2010012**)
2016년 06월 17일
목 차

요약 .. 3

Ⅰ. 서론 .. 4
 1.1. 연구배경 ... 4
 1.2. SWCNT ... 4

Ⅱ. 본론 .. 5
 2.1. 연구 내용 ... 5
 2.1.1. 사전연구 ... 6
 2.1.2. 배경 이론 ... 6
 2.2. 실험 과정 및 결과 .. 6
 2.2.1. 실험 과정 ... 8
 2.2.2. 결과 ...

Ⅲ. 결론 ... 9
 3.1. 요약 및 결론 ... 9
 3.2. 향후 과제 ... 10
참고문헌 .. 10
Abstract

Carbon nanotubes have depend on alignment to be used for electron devices. We have experiments to identify the trend of dielectrophoresis process. the lower characteristics of devices when used the CVD process is improved by Electrical breakdown in air. We understand the improvements of characteristics from comparison before/after breakdown. Then, we found the optimistic value of DEP process through experiments.
Ⅰ. 서론

1.1. 연구배경

탄소나노튜브를 이용한 전자소자 제작하기 위해 탄소나노튜브를 정렬하는 방법으로 기존에 사용된 방법은 CVD(Chemical vapor deposition) 공정을 통해 고온, 고압에서 탄소나노튜브를 정렬하는 것이었다. 하지만 CVD 공정은 매우 비싸고 복잡하여 대면적으로 실행하기에는 무리가 있다. 이에 보다 저렴하고 간단하게 탄소나노튜브를 정렬할 수 있는 DEP(dielectrophoresis) 공정을 통해 용액 타입의 탄소나노튜브를 정렬하고자 하나 DEP 공정은 CVD 공정보다 탄소나노튜브의 정렬성이 떨어져 CVD 공정을 통해 만든 소자보다 특성이 안 좋기 때문에 이를 개선하기 위한 방법을 찾는 연구를 진행하였다.

1.2. SWCNT

SWCNT란 Single Wall Carbon Nano Tube의 약자로 원기둥 모양의 나노구조를 지니는 탄소의 동소체이다. 길이와 지름의 비율이 132,000,000:1에 이르는 나노튜브로 만들어졌는데, 이는 지금까지 알려진 물질 중 가장 높은 값이다. 탄소 나노튜브는 여러 특이한 성질을 가지고 있어서 나노기술, 전기공학, 광학 및 재료공학 등 다양한 분야에서 유용하게 쓰일 수 있다. 이처럼 탄소소재는 넓은 활용 범위를 가진 미래 소재로 기대를 받고 있으며, 특히 탄소나노튜브(CNT)는 특성 및 응용범위 등에서 잠재력이 무궁무진하다. CNT는 선진국 중심으로 활발한 R&D가 추진 중이며, 최근 상용화를 위한 대량 생산 기술개발이 이루어지고 있다. 최근 2013년에는 처음 CNT를 사용해 컴퓨터 개발에 성공하였고, 2015년에는 scaling down을 하는데 있어서 한계점을 CNT를 사용함으로써 해결하기도 했다.
II. 본론

2.1. 연구 내용

2.1.1. 서론 및 사전 연구
탄소나노튜브가 전자소자로 쓰이기 위해서는 탄소나노튜브를 얼마나 원하는 위치시키느라에 달려있다. 기본적으로 CVD공정은 고온, 고압에서 CNT를 정렬시키는 방법이다. 하지만 매우 비싸고 복잡한 공정이므로 그보다 정렬성은 약간 떨어지지만 비교적 빠른 시간으로 대면적하고 저렴하게 정렬이 가능하므로 DEP공정이 매력적이다. DEP공정을 통해 탄소나노튜브를 정렬할 때 전기장의 진폭, 주파수, 파형, Dutycycle 등을 변화시켜가며 실험하였다. 이 때, 직류 전압을 가해줄 경우 CNT가 한쪽으로만 쏠려있는 것을 확인하였고 교류 전압을 가해 주어야 CNT가 양쪽 전극을 떼게 되어 정렬이 되는 것을 확인하였다. 그리고 Square wave와 Sin wave를 비교하였을 때 Square wave가 좀 더 작은 주파수 범위에서 정렬이 가능하였다. Duty cycle은 40~60%구간에서는 많은 차이가 발생하지 않아서 평균값인 50%가 적당하였다. 이러한 근거로 전압을 +-3V와 Frequency는 1~1Mhz, Wave파형은 Squarewave, Duty cycle 50%로 사전 실험을 구상하고 실험이었다. 실험이하에 앞서 우선적으로 전극 사이의 채널유무를 확인해야 한다. 만약 이미 채널이 있는 전극이라면 DEP공정이 올바르게 되지 않을 수 있기 때문이 다. 또한 CVD공정보다 정렬성이 좋지 않아 특성이 걸어지는 점을 개선하기 위해 Air breakdown, TcEP 공정 등이 사용될 수 있다.

2.1.2. 배경 이론
DEP(유전영동)의 원리는 극성이 없는 입자가 불균일한 교류 전기장에 노출되었을 때 쌍극성 (dipole)이 입자에 유도되며, 유도된 극성의 크기와 방향은 인가된 전기장의 주파수와 전도도 및 유전율과 같은 유전특성에 따라 달라진다. 이 때 입자가 높인 주변 환경에 따라 입자의 극성이 결정되기 때문에 입자는 전기장의 구배가 큰 쪽 또는 작은 쪽으로 힘을 받게 된다. 전기장이 가해졌을 때, 입자가 받는 힘의 크기는

$$F_{DEP} = \Gamma \varepsilon_m \text{Re}\{F_{CM}\} \nabla |E_{rms}|^2$$

위 식과 같이 표기되고, 용액안의 입자는 아래의 그림과 같이 전기장의 구배의 방향에 따라
움직이게 된다. 이 때, 입자가 받는 힘에 영향을 미치는 인자로는 전기장의 진폭과 주파수, 전기장이 가해지는 시간 그리고 사용하는 용액의 농도 등이 있다.

2.2. 실험과정 및 결과

2.2.1. 실험 과정

실험 과정은 다음과 같다. 먼저 실험에 사용할 용액을 만드는데 이 때, SWCNT를 증류수와 일정한 비율로 섞는다. 실험에 사용되는 SWNT FET은 Si(N+ doped Si)를 Bottom Gate로 그 위에는 SiO2(150nm)를 마지막으로 Ti/Pd로 구성된 두 개의 전극(Source, Drain)으로 구성되어 있고 여기서 Channel length는 30um이고 Width는 이다.(Width와 Length는 모든 실험에 동일하게 준다.) 아래와 같은 기판 위 두 개의 전극 사이에 SWCNT 용액을 떨어뜨린다. 그 후 Source와 Drain전극을 통해 구형과를 만들기한다. 실험이 끝난 후에 용액을 제거하 여 준 후 전류 값을 측정하여 전극 사이에 SWCNT가 정렬되었는지를 확인한다.

실험에서 사용된 전기장의 진폭은 5V, 주파수는 100kHz로 고정시키고 공정 시간은 10, 20, 30, 60, 120, 180, 300, 600초의 8가지 경우로 진행하였고, 용액의 농도는 1000:1, 3000:1, 5000:1 과 10000:1 4가지 경우로 실험하였다.
2.2.2. 실험 결과

위 사진은 공정시간의 변화에 따른 전극 사이에 SWCNT가 정렬된 모습이다. 사진은 용액의 농도가 5000:1인 실험을 통해 진행되었고, 비교적 흰 부분이 전극, 검은 부분이 SWCNT이다. 3min사진 부터는 전극 사이가 하얗게 표시되는 것을 관찰할 수 있는데 이는 정렬되는 SWCNT가 많아져서 하얗게 보이는 것이다. 사진을 통해 시간이 지날수록 많은 SWCNT가 전극 사이에 정렬되는 것을 확인할 수 있다.

위 사진은 실험에 사용한 용액의 농도를 달리 했을 때 전극 사이에 SWCNT가 정렬된 모습이다. 실험을 진행할 때 공정시간은 20초로 고정하여 진행하였다. 용액의 농도가 올라짐에 따라
전극 사이에 정렬되는 SWCNT의 숫자가 줄어드는 것을 확인할 수 있다.

공정시간을 변화시키며 실험한 경우에 공정시간이 길어질수록 더 많은 SWCNT가 정렬된 이유는 외부에서 전기장이 가해지는 시간이 길어질수록 용액 안의 입자가 받는 힘이 오래동안 지속되기 때문에 더 많은 SWCNT가 정렬되고, 용액의 농도가 떨어질수록 전극 사이에 정렬되는 SWCNT의 양이 감소하는 이유는 이론에서 보았던 식에서 Re(\(F_{cm}\))부분이 농도가 낮아질수록 낮은 값을 갖기 때문이다. 이로인해 입자가 받는 힘이 크기가 줄어들고 전극 사이에 정렬되는 SWCNT의 양이 감소하는 것이다.

위 사진은 DEP공정으로 소자를 제작하였을 때 특성이 떨어지는 점을 보완하기 위해 공정 후 Air breakdown 기법을 적용한 전과 후의 사진이다. 기법을 적용하기 전 사진이 왼쪽이고 후가 오른쪽이다. 적용 후에는 SWCNT가 끊어진 모습을 확인할 수 있다. 오른쪽 그래프는 breakdown 전후의 on current와 Ion/Ioff ratio를 비교한 그래프인데 breakdown 후에 on current는 다소 떨어지만 Ion/Ioff ratio가 많이 개선된 것을 볼 수 있다. 이는 Air breakdown 기법으로 금속특성을 가지는 SWCNT가 끊어졌기 때문이다.

Ⅲ. 결론
3.1. 요약 및 결론
탄소나노튜브 기반의 전자소자를 만들기 위해서 DEP공정을 통해 용액 타입의 SWCNT를 정렬하였다. 기존 공정인 CVD공정보다 훨씬 저렴하고 간단하게 탄소나노튜브를 정렬시킬 수 있지만 정렬성이 떨어져 소자특성이 떨어지는데 이를 개선하기 위해 Air breakdown 기법을 사용하였다. 실험은 용액의 농도와 공정시간을 변화시켜가며 진행하였고 그에 따라 SWCNT의 정렬이 어떻게 되는지 관측하여보았다. 공정시간이 길어지면 전극 사이에 정렬되는 SWCNT의 양이 늘어났고, 용액의 농도가 낮아지면 줄어들었다. 그 후 소자의 특성을 개선하기 위해 Air breakdown을 시행하였는데, breakdown를 통해 on current는 감소하지만 Ion/loff ratio는 크게 증가하여 소자의 특성이 많이 개선되었다. 실험을 통해 원하는 특성 값에 가장 근접한 결과를 얻은 실험 조건은 전기장의 진폭은 ±5V, 주파수는 100kHz, 공정시간은 20초 그리고 용액의 농도를 5000:1로 진행한 후 Air breakdown 기법을 사용하였을 때 우수한 특성을 갖는 소자를 가장 많이 얻을 수 있었다.

3.2. 향후 과제
현재의 실험에서 사용되는 전극은 금속(Ti/Pd)전극 기반의 소자였다. 앞으로의 실험에서는 그래핀과 같은 탄소소재의 전극을 사용하여 DEP 실험을 진행하여 금속전극을 사용하였을 때와 같은 경향성을 가지는지 비교하고, 전극의 모양을 바꿔서 진행하여 대면적 공정을 할 수 있도록 할 예정이다.
참 고 문 헌

1. Sai Li, Ningyi Liu, Mary B Chan–Park, Yehai Yan and Qing Zhang / Aligned single-walled carbon nanotube patterns with nanoscale width, micron-scale length and controllable pitch / Nanotechnology(2007)

2. James Hedberg, Lifeng Dong, and Jun Jiao / Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates / APPLIED PHYSICS LETTERS(2005)

8. 심형철 / 양자 젤-탄소나노튜브 나노 하이브리드 구조체를 이용한 광전 소자의 제작 및 특성 평가에 관한 연구 / KAIST 박사학위논문(2010)

9. 박재균 / 유전(dielectrophoresis)을 이용한 미세유체제어 기술 / 한국바이오칩학회